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Application of the Arnoldi Method
in FEM Analysis of Waveguides

Jacek Mielewski and Michal Mrozowski, Member, IEEE

Abstract—This letter presents the application of the Arnoldi
method to the solution of generalized nonsymmetric sparse eigen-
problems which arise in the waveguide analysis involving the
finite element method. To assess the efficiency of the Arnoldi
method, the solution time is compared against the time required
by the subspace iteration algorithm. It is found that the Arnoldi
method converges much faster and gives significant CPU time
savings.

Index Terms—Arnoldi method, finite-element methods, non-
symmetric sparse eigenproblems.

I. INTRODUCTION

A FINITE-ELEMENT method (FEM) is one of the most
versatile techniques of solving partial differential equa-

tions and many authors [1]–[5] advocate the application of this
method to the analysis of arbitrarily shaped inhomogeneously
loaded waveguides. If a guide is strictly bidirectional [6] the
finite element analysis leads to the generalized eigenvalue
problem [5]

(1)

where is an eigenvalue and denotes a vector of field
expansion coefficients. Matrices and are, in general,
sparse and nonsymmetric.

The choice of a method used to solve the above problem
determines the overall computation time and is one of the
crucial steps in the FEM analysis. Because of the nonsymmetry
of the matrices and the nondiagonal structure of matrix
the choice of numerical methods for solution of (1) taking
into account the sparsity is limited. To the authors’ knowledge
the most efficient technique used so far in the FEM analysis
of waveguides is the sparse version of the subspace iteration
(SI) technique [3]–[5]. Recent studies showed that, depending
on the application, the performance of the software based
on SI may be superior or inferior [7] to the performance
of the software based on the Krylov space concept such as
the Arnoldi method [8]. For this reason, in this letter, we
compare the efficiency of the SI with the Arnoldi method in the
waveguide analysis. It has to be noted that the Arnoldi method
was shown to give very good results in solution standard
dense [9] and sparse [10] eigenproblems obtained by means of
the method of moments or finite-difference frequency-domain
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method (FDFD), respectively, but has not yet been tested in
the generalized eigenproblem which arise in the FEM analysis
of waveguides.

II. SOLUTION OF SPARSENONSYMMETRIC EIGENPROBLEM

Numerical techniques for computing eigenvalues of sparse
nonsymmetric problems include the subspace iteration method
and the Krylov space methods [8]. The subspace iteration
method starts with the initial matrix (where

and is the size of the sparse matrix to be analyzed)
and generates a sequence of matrices which converge to
the invariant subspace of a sparse matrix corresponding to
the dominant eigenvalues. An example of the Krylov
subspace method is the Arnoldi algorithm. The Arnoldi method
starting with a trial vector builds an orthogonal basis in
the Krylov subspace. For many years the Arnoldi method was
considered less efficient than SI because of the higher memory
requirements. However, this difficulty has been overcome in
the recent years with the introduction of explicitly [8] or
implicitly [11] restarted iteration.

In solving large sparse problems one is usually interested
in finding only selected eigenvalues which may be located
in various parts of the spectrum. For instance, in waveguide
problems one is typically interested in a few dominant modes
which correspond to the eigenvalues with the largest real part
but the smallest magnitude [5]. The most suitable technique for
finding the dominant modes involves the shift-invert strategy
in which eigenproblem (1) is converted to the eigenproblem

(2)

where is the shift. When an iterative solver is applied,
the product of matrix operator and some varying vector

is repeatedly calculated. In the modified eigenproblem
(2), the matrix operator is the product of the inverse of
matrix and matrix . Instead of calculating the
inverse directly, a sparse LU decomposition of the matrix is
performed. Consequently, when product
is required, a linear system of equations
is solved instead.

The convergence rate in the shift-invert mode in iterative
methods depends on the shift. In the waveguide analysis it
is convenient to choose the shift so that where

is the wavenumber for a plain wave in vacuum. In that
case the dominant modes correspond to the eigenvalues of (2)
possessing the largest magnitude.
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Fig. 1. Analyzed structure (dimensions are in millimeters) and calculation times (CPU time SGI power challenge) of the subspace iteration and the Arnoldi
methods for odd modes versus the problem size. The modes were calculated at 12 GHz.

Fig. 2. Speedup of the Arnoldi method over the subspace iteration.

III. RESULTS

To compare the efficiency of the Arnoldi method versus
the subspace iteration we used the FEM code developed at
UCL London [3] to compute the four dominant modes of
a symmetric structure of the image guide shown in Fig. 1.
The code, which was originally designed to work with the

SI, was modified so that different solvers could be used.
Using the modified code we compared the SI based on the
algorithm described in [5] with the implicitly restarted Arnoldi
(IRA) method available in the form of a public domain library
ARPACK.1

1http://www.caam.rice.edu/software/ARPACK.
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The shift-invert approach was applied in the form of (2).
Before iteration, the sparse LU decomposition was performed
on the matrix . In order to ensure convergence of
the SI method we had to use different values ofdepending
on calculated mode type, for odd and for
even modes. In the IRA method the shifts were selected in the
same manner. The size of subspace in each of the methods was
fixed at . Relative accuracy of the calculated eigenvalues
was 10 in both methods.

Calculation times of four dominant odd modes for SI and
IRA methods are presented in Fig. 1. The Arnoldi method
is seen to be significantly faster than the subspace iteration.
Speedup of the Arnoldi method over SI, presented in Fig. 2,
is greater than 8 for almost all problem sizes. Very similar
observations were made for calculation of four dominant
even modes. A better performance of the IRA method comes
from two factors. One reason is a faster convergence rate. In
our tests the IRA method converged in nine iterations while
SI required 30 iterations before the convergence criteria
were satisfied. Additionally the IRA iterations involved fewer
(costly) solutions of a linear system . The
IRA method required the system to be solved30 times
while the 30 iterations in the SI method was associated with
240 solutions. Comparison of the number of solution steps
gives the figure of 8, which is in agreement with the data in
Fig. 2.

IV. CONCLUSIONS

Tests performed show that the Arnoldi method with implicit
restart is more efficient than the subspace iteration method for
solving nonsymmetrical sparse eigenproblems arising in the
FEM analysis of dielectric waveguides.
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