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Application of the Arnoldi Method
In FEM Analysis of Waveguides

Jacek Mielewski and MicHaMrozowski, Member, IEEE

Abstract—This letter presents the application of the Arnoldi method (FDFD), respectively, but has not yet been tested in

method to the solution of generalized nonsymmetric sparse eigen- the generalized eigenproblem which arise in the FEM analysis
problems which arise in the waveguide analysis involving the of waveguides.

finite element method. To assess the efficiency of the Arnoldi
method, the solution time is compared against the time required
by the subspace iteration algorithm. It is found that the Arnoldi I
method converges much faster and gives significant CPU time
savings. Numerical techniques for computing eigenvalues of sparse

Index Terms—Arnoldi method, finite-element methods, non- NONsymmetric problems include the subspace iteration method
symmetric sparse eigenproblems. and the Krylov space methods [8]. The subspace iteration
method starts with the initiah x m matrix (wherem <
n and n is the size of the sparse matrix to be analyzed)
and generates a sequence of matrices which converge to

FINITE-ELEMENT method (FEM) is one of the mostthe invariant subspace of a sparse matrix corresponding to

versatile techniques of solving partial differential equathe m dominant eigenvalues. An example of the Krylov
tions and many authors [1]-[5] advocate the application of thisibspace method is the Arnoldi algorithm. The Arnoldi method
method to the analysis of arbitrarily shaped inhomogeneousiarting with a trial vectorz builds an orthogonal basis in
loaded waveguides. If a guide is strictly bidirectional [6] théhe Krylov subspace. For many years the Arnoldi method was
finite element analysis leads to the generalized eigenvaltensidered less efficient than SI because of the higher memory
problem [5] requirements. However, this difficulty has been overcome in
9 the recent years with the introduction of explicitly [8] or
L (1) implicitly [11] restarted iteration.

where~? is an eigenvalue and denotes a vector of field In solving large sparse problems one is usually interested

expansion coefficients. Matriced and B are, in general, in finding only selected eigenvalues which may be located
sparse and nonsymmetric. = = in various parts of the spectrum. For instance, in waveguide

The choice of a method used to solve the above probIé?FP_blems one is typically ihterested in a_\few dominant modes
determines the overall computation time and is one of gghich correspond to t_he eigenvalues with t_he largest rgal part
crucial steps in the FEM analysis. Because of the nonsymmelgyt the smallest magnitude [5]. The most suitable technique for
of the matrices and the nondiagonal structure of maBix finding the dominant modes involves the shift-invert strategy

the choice of numerical methods for solution of (1) takinf! Which eigenproblem (1) is converted to the eigenproblem

into account the sparsity is limited. To the authors’ knowledge 1
the most efficient technique used so far in the FEM analysis (A4- Ué)_léi =5 Z (2)
of waveguides is the sparse version of the subspace iteration e
(SI) technique [3]-[5]. Recent studies showed that, dependiiere o is the shift. When an iterative solver is applied,
on the application, the performance of the software bas@fe product of matrix operator and some varying vector
on Sl may be superior or inferior [7] to the performance is repeatedly calculated. In the modified eigenproblem
of the software based on the Krylov space concept such @y, the matrix operator is the product of the inverse of
the Arnoldi method [8]. For this reason, in this letter, wenatrix (A — oB) and matrix B. Instead of calculating the
compare the efficiency of the Sl with the Arnoldi method in thiwverse directly, a sparse LU decomposition of the matrix is
waveguide analysis. It has to be noted that the Arnoldi methgdrformed. Consequently, when= (A—0oB)~' Bz product
was shown to give very good results in solution standargl required, a linear system of equatiofd — 0 B)y = Bz
dense [9] and sparse [10] eigenproblems obtained by meansso§olved instead. o -
the method of moments or finite-difference frequency-domainThe convergence rate in the shift-invert mode in iterative
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. SOLUTION OF SPARSE NONSYMMETRIC EIGENPROBLEM

I. INTRODUCTION
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Fig. 1. Analyzed structure (dimensions are in millimeters) and calculation times (CPU time SGI power challenge) of the subspace iteration adi the Arn
methods for odd modes versus the problem size. The modes were calculated at 12 GHz.
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Fig. 2. Speedup of the Arnoldi method over the subspace iteration.

IIl. RESULTS Sl, was modified so that different solvers could be used.
gsing the modified code we compared the Sl based on the

T he effici f the Arnoldi h ? . . . A .
0 compare the efficiency of the Arnoldi method versu Igorithm described in [5] with the implicitly restarted Arnoldi

the subspace iteration we used the FEM code developeqa X . . e
UCL London [3] to compute the four dominant modes 0I A) metlhod available in the form of a public domain library
. . . . . RPACK.

a symmetric structure of the image guide shown in Fig. 1.

The code, which was originally designed to work with the http://iwww.caam.rice.edu/software/ARPACK.
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